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ABSTRACT

We present a new collocation method for the numerical solution of partial differential
equations. This method uses the Chebyshev collocation points, but because of the way the
boundary conditions are implemented, has all the advantages of the Legendre methods. In

particular L2 estimates can be obtained easily for hyperbolic and parabolic problems. 0
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1 Introduction I
Polynomial pseudospectral (or collocation) methods have been extensively used in the nu- 0

imerical solutions of partial differential equations. The underlying idea in those methods is
to approximate the unknown function by an interpolation polynomial at some pre-described
(collocation) points. The polynomial is then required to satisfy the PDE at the collocation

points. This procedure yields a system of ordinary differential equation to be solved.

Historically, (see [10]) the first such points to be used were the Chebyshev collocation
points

X = COS( 0!5Nrj,.0O•j<N.

Those poitits were chosen because they allowed the use of Fast-Fourier-Transforms in the
computations. It was only later (see [71) that those points were idefitified with the nodes

e'f th- Gauss-Lobatto-(Ceby.hev (C-L-C) quadrature formula. This observation is the key
;n tCe stabilit, analysis of the pseudospectral Chebyshev methcds. The G-L-C quadrature
formula led to t!e weighted L2 norm

S2 (X - dx

:Nowever, it has been noted in [81 that this ik not a natural norm for hyperbolic equations.

In fact the differential equation is not well posed in this norm. Also it complicattl' the

stability analysis even for parabolic equations. The theory (and therefore the confidence. in

applying those me thods) is not complete. 0
Once the connection between the collocation points and the Gauss Lobatto points is

established, it is natural to use die nodes of the Gauss-Lobatto-Legrndr (G-L-L) quadrature
formula. We refer the reader to (2] for review of those methods. Recently [I] an O(N log N)

method was proposed for the Legendre points. The main problem with those points are that

they are not given explicitly, and their evaluation for large N is not robust due to r'oundoff

errors.

In this paper we present a methtol (and name it The Cheb6 yhr-LrgrUdrr Mrthod) that

has the advantages of both the Chebyshev and Legendre methods. The method utilizes the

('he•yshev collocation poini allowing the use of fast Fourier algorithms and avoiding the
routdoff error associated with computing the Legentdre grid points. The boundary conditions
mre inptxsd via a new penalty technique in such a way that the methtod is stable in the tisnal

L, norm (rather than the weighted L, norm). Hene the Chebyshev-Lcgeudro niethod enjoys

the advantag" of the Chehyshev method as well as those of the Lgendrt, method.
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The implementation of tile boundary conditions is done by a penalty method. A penalty
term is added to the PIDE at all grid points in such a way that, in the limit of number of
grid points tend to infinity, the boundary conditions are satisfied. This procedure seenis to
be better than the direct imposition of the boundary conditions, and in our case has the

extra advantage of yielding the Legendre method at the Chebyshev points.
A similar idea had been tried by Reyna [111. The difference between his approach and

ours is in the imposition of the boundary conditions. Instead of transforming from the 0
C(iebyshev basis to the Legendre one as in [11], we impose the boundary conditions via
penalty method and through that automatically switch to the Legendre basis without using

it in the differentiation piocedurr.
The paper is organized as follows: S

In Section 2 we quote the essential formulas for the use of Chebyshev and Legendre

methods.
in Section 3 we present the Chebyshev-Legendre method for hyperbolic equations. In

subsection 3.1 we describe the method and prove (in Theorem (3.1.1)) an energy estimate S
to show stability. In Theorem (3.1.2) we bring another version of this energy estimate.

In subsection 3.2 we consider the relationship of the new method to the Legendre penalty

method and show that the differentiation matrices of the two methods are related via a
* similarity transformation. This fact is proved in Theorem 3.2.2 •

In Section 4 we discuss and prove the stability of Chebyshev-Legrndre method for the
heat equation with Robin boundary conditions.

Section 5 concludes the paper with some numerical experimetgations with the new
method. •

In future work we will report on the convergence results of the new miethod for nonlinear

hyperbolic equations.

2 Preliminaries

This Section is devoted to the definitions of the pseutdospectral methods to be used later. We
will discuss Chebyshev and Legendre methods which are based on the (lrbytshrV pot &nomini

Tr(z) = cos(Nco-':) (2.1) X

and the Ltguadrr poeIyomisht

PNlZ)= 2 dNN - (ZI- (O (2.2)

respectivly. Associated with these two polynomials are sevwral Gauss-type quadrature fur-
mulas. We will consider, in this paper, the Gu"ss Loljatto type formulas.

2
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We start by defining the Chebyshev Collocation points xj by

Xj = Cos(-) 0 < N (2.3) 0

These points are the zeroes of the polynomial (I - x 2)TN(x) and associated with it, we have

The Gauss Lobatto Chebyshev Quadrature Formula:

Let f(x) be a polynomial of degree 2N - 1, then 0

N IEf (xj)cj =f_ f(00( - ý)-½d (2.4)

j=o

where the weight c are given by 0

c= y I <_j < N- 1 (2.5)

CO - CN 2N 0

Similarly, the Legendre Collocation points yj are defined as the roots of the polynomial
(I - x 2)PkN(x). For these points we have

The Gauss Lobatto Legendre Quadrature Formula: * _

Let f((x) be a polynomial of degree 2N - 1, then
N I

E f(y)w - f(04 (2.6)
j=ut

0
where the Gauss Lobatto weights w, are given by

2N P'•)'••y)' + Ij<N-I(•¢
2

N(N + 1)

Unlike the Chelyshev points that are known explicitly, there is no explicit formtla for the
Legendre points y ,. they have to hw compulted numerically. It is intm-liug though that thwre
Ps a simple formula, easily and robustly computed, for the values of the Legendre polynomials 0

and their derivative at the Ceblty t- points. In fart we have the following explicit formula

for P•(.r,). (taken from {41. page 180)

,,!(N - - N(.8)

0
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Pseudospectral (or Collocation) methods are based on interpolations at the points x, or

y2. Consider the polynomials

QL(.r) 0 (- X2 )PN'(X)

Qc W) = (1 - r2 )TNIr).

and define the Legendre-Lagrange polynomials by

hjo = QL(.r) (2.9)

and the Clebyshev-Lagrange polynomials by

gj (X) Q(,-(x) (.0
(x~r - x)QC(x) (.0

Then, the Legendre interpolation operator IL, is de-fined by

NS

whereawj the ('hebyshev interpolation operator I(, is defined by

* N IO

By definition. we hv

(ILf)(J) = B,

U(Ic)(zr.) = Xj

Frvtn !he diefinition of the i-aterpolatiou operators 14L antd It- we get the ,;wcrtzl diffrnni.
fi4Li~ft 11116Aor- ?)I itnd DR. as follows:

The P~wodupe- tral ti-gendre Differentiation Matrix 'DI. is dlefinled by

('DL)j,,k = A'(y,). (2. 131)

The Pset!ýiopedtral Chey-hev IDiffetentiatiun Matrix A. is- id.iumd Ity

(Dc),A = ~r,).f2.14)

(wee (3 for explivit expresqt*.niuN for the niatricr-I

4
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* 3 Hyperbolic Equations

3.1 Scalar Hyperbolic Equation *

4) IIn this Section we consider the scalar initial-boundary value hyperbolic equation

tit u= U,_< X< I ti>_o (3.1)

with the initial condition 0

UJ(xO) = f(x) (3.2)

and the boundary condition

U(0,t) =g(t) . (3.3)

The Chebyshev-Collocation (Pseudospectral) method involves seeking an Nth degree
x-polynomial u,(x, t) that satisfies •

OUN(X t)= _U ,t) at r = xj I •j <_ N (3.4)

5t dx

with the houndary condition

u.,.(1,t) = uv(.r( 1,t) =(t) (3.5)

where x. arte determitieti in (2.:1) (xo = I).

Nrite that the equation is satistied at all the grid points except at the ioundary point

r = I where the houndary condition is satisfied,

It gentrral, the term a-uv.(x.t) is evaluated at all the grid points, with the use of either

FF1 ot tuatrix-ve'ctor mnultiplicatiou uising the matrix 'Pt-. l~tuilttion (3.I4) is then advanctl
at all the grid l ohints. The valie of the solution at the t•nuutlary is then up, lattd using (3.5)).

ih (5) a penalty type method waw introducdt. In that approach We still u•se equation
(3-.4 for the ilt-er points .r,. I _ J ( N. however inttead of usinA 0:1.1) fOr the ilouilldary,

the t'lhn0ving equation is .atisfied

d.•.~(l.t) =i~th(.lr')t• - l0It t)(15

1t ut "(- 0

where i ik deteriuilned (lrani stahility ideratioIIs i pauticular it h4ad l4e1t1 (Oulltt that
"stahility follows if

,,It

- 2
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Equations (3.4) and (3.6) can be combined into a single equation by noting that the

collocation points xj defined in (2.3) are the zeroes of the polynomial (I - x.)Tk(x). Thus

the penalty method [5] can be written now as

dOU(Xj,t) = OuN(Z',t) 0 + xj)T(xj)(( (3.7)
at OX 0 2TN(l)

for j=O,..., N. (

The main difference between the penalty method (3.7) and the usual (hebyshev method

given in (3,4) and (3.5) is that the numerical solution uN(x, t) does not satisfy the boundary

condition exactly, but only in the limit as N -- o0. The boundary condition is now part of
tihe equation.

Another penalty method, based on the Legendrn points y. is presented in [6]. Similar to

(2.6) we write this method as

Ou"(yj,t) = Ou N(.r, t) I 0='() (u', 0 - g(t)) (3.8)

for j = 0,...,N.
The parameter r is determined by the stability requirement. Thus the differeutial equa-

tion is satisfied at the points y,,j = I,..., N. At the boundary z0 = I one uses a combination

* of the boundary condition and the differential equation. 0

An obvious disadvantage of the method in (3.8) is that it utilizes the Legendre points.

dowever comparing (T.7) and (3.8) shows us how to utilize the Legendre penalty methul

(3.8) at the C'hebyshev points.

The Chebyshev-Legendre (C-L) Method

Let i's,(z) be the Legeudre polynomial of degree N. In the (-L method we seek a

polynomial of degree N in r that satisfies

,_,____t) _, d (Z.t (i +.,,iP'(., ,Of = it"i,, - r N (1) O -0 - 9(0))(19

or 0. N.

NOtr that the pe'naht', term is different frmu tero for all tie (hehtyshev grid

, .r.. NV.te ai4 that applying (19) entails the use of the ulifferrtiliatioul matrix Pth at th.

¼ r . point.,. In fact. givet us(Xp.,) tote finds tile derivative 6aMwd ott the ('helhyshev

omintls. and then add the peualty term with different weights at rerry grid tpoit. The terni

I•V(.r) is evaluate using the xplicit fonmula (2.,). This is tlos- tir, and fur ll for a•iy

grid size N.

6
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The surprising fact is that the C-L method, though computed at the Chebyshev points,

is stable in the usual L2 norm, rather than the weighted L2 norm. III fact one can state

Theorem 3.1.1 : Thr L2 Stability of the (C-L Method.
4)

let uN(.v, t) be the solution of (3.9). Let w, be the weights of the G;auss Lobatto Legendre

quadrature formula and y, the nodes of the same quadrature formula. Let g(t) = 0 in (3.3)

and (3.9), then for

> = N(N,+ 1)
2wo

the (C-L method is stable in the L-1 norm. More specifically,

N NE .u,(y.t),, = • • ((y,.0),, (:I3.10)

J=O J=O
tr

Iit"(I.t)(2wor - 1) + u 1(-l,t)l]t .

Proof:
It follows from (3.9) that

ou.,x,( t) = o,,,(.x.t) ,.r I + X) /ýv W (Us,, f~)_ 00)" -p.1 I I)
at Ox 2P•.(l)

This is becaus both sides of (3.9) are polynomials of degree N that agree at N + I points.

uanwvi at the ('hebyshev collocation points .r,.O j < N.

We now read (3.11) at the LDqr ndr points y, to get

t 2rv•a, ,t

Sinice tihe ;ulotat- flii• q a rt r formlula is exaet for pulyuto mlial of ilegrve.

2,V - I it follows that

= J (ui . .L- -

and 1 thus fhi stalimity esti mate (COO) follow!. The "Tmh.~re is thus proven.

Nioll that unlike the Legitied Penalty method (UI). in which onte needto I ise the

Legentdi pointls y; in tile computatio•ls. thtr. poitils do not appear in the 4uqllrtaltition¶s in

7



the C-L method. They are just introdu.'ed for the sake of the proof. The actual computations

are done using the Chebyshev grid points xj.

An energy estimate based on the Chebyshev points x, can be derived by using (2.11) and

(2.12) as follows:

Theorem 3.1.2 :

Let
N N

E E Hj4 UN(X1, t)ur,,tx, ) (3.12)
J=0 1--0

with
N 0

H,,, = L9 g,(yb)g:(yk)wk •
k=O-G

where the Chebyshev-Lagrange polynomials gi(.) are defined in (2.10).

Then u,(., t) satisfies the energy estimate

IIuN(-' t)0l = u,(., 0)11 - f{u'(1, t)(2u,,r - 1) + u'(-I, t))d} (3.13)

Proof:
Equation (3.13) is really a restatement of (3.10). Since um(xrt) is a polynomial of degree

N in x, it can be represented exactly by

N.. (•.t) = ,, = •,••.9()
t-o

Thus
N

UNt I) = 0 uv (--I. t)• (qy,). (3.14)
1=0

The ,stimate (.l-1) folluws from (3.10) upol s-aistituting (3.14) for the, vataes of u,,(y, 1).

The throrem is pruven.

The (C-l. met.1htl rav Ie viemd from mnt1y different point" of view. Theorem (3.1. 1

,llows that this 1P0.h104. it, the rialstaill C, delit va.p-. is ,equivAM.1It to tlw li..-tdw-re

I..llmaltv ,n'th gimtrud1ur.tt in [.5•
lh14. the V-L method is the realization of the Legendcre oethod at the Ciheby-

shev points.

r \ 0 ,1"r, t1141. ,^titn hy tmintinl• wit that thr ,t ital- (1131. 1 -1 6 "114- t,# ,i tit

,,'-tein.. ,1..ily. Awtaily it had 1*vn dthirn in '11. " Our h,,,a t,. fwll thr "•,ml- . It h-,v,-

the ('.I. lotthod V, Staile fu(or c"stMant of r11VI'nl.-, ,,y~iml•,, , .

st0
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3.2 The Differentiation Matrices

Perhaps more insight can be gained if one compares the differentiation matrix induced by

the (C-L method DCL with the differentiation matrices induced by the ('hebyshev penalty

method (3.7) P(-, and the Legendre penalty method (3.8) PL".

We start by noting that the differentiation matrices PL, and Pr. defined in (2.13) and

(2.14) do not take into acc'mut any boundary conditions. The differentiation matrices in-

duced by (3.7). (3.S) and (3.9) are variations of the hasic matrices PL. and 'Pu, differing only 0

in the method of imposing boundary condition.

Not s.urprisingly. PL and TV are similar, aftt-r all both differentiate .ractly polynkomtials

of degree N. Since for these p',ynomials. the operators IL and I(. are the sane, the matric-t.

PL and P(. represent the same operation in a different basis. This implies a similarity •

relationship. More spet'itically, tl.s relationship crm be written explicitly:

Theorem 3.2,..L

Let S be the matrix whose elements . ;i.k are given by" S

.= ).,(.,) (3.15)

where hIyx) are the Legendre-Lagrauge polynomials defined in (2.9). Again x. are the

C(hebkshev points.

Let T be the matrix whose elements Ti are given by

"r,.,. = y (.q(3.1

where (q1 .r) the ( hebshev-L Lagrange polynoumiais adr defined in (2.10). yk are the Legendre
'olhw~at ioti points.

Th en

$ = (3.1T)

andi

A.k. ,3P. T

Since Itr is a golwnmial t4 .legre . at s, •ivew b-
isai, f ,r .N 1•

9,,• l =Z ~q..ib•ib+ "• •.l l0

*/1,01

9.

• 0
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SubStituting Xk and making ntse of the fact that gflj-t) bik We get

=N

proving that

I ST.

Differentiating (3.19) we get

N
h'(.r) =E

1=0

which leads to

N N

1=0 'm=0

The theorem is thus proved.

We will show now that the (Iitferentiation matrix imiidictd by the (XL uieiiitxi PhIt is
similar to the differentiation matrix D(-Iý induced by the Legetitire pe-ia.lty rotbOux (3,10).
This will demoust rate thle (act %hat the (. methotd is the real jzatiuu of the Lvgeutlre methodt

on the (iebyshev grid.

Thtrm 2.2-2

Let DC-L be the differentiation mnatrix induced by thle (Cheby"4Iev L~egentire met hod (3.9)
andi DL,. the differentiation merthud indlu"A~ by the Legenre Penalty methodi (18) thell

tc =$Dtj4r 3N

wherr tile mAtriem $1T definedl in (3l.l1). f1316) arm tile krans-fomnation m~triers 1etu-crm

tile (hellvshev poinlts andi thle Legenwrt' poits.

NOte that OWe 4dI'ifter tiioln llattiX P rtenia thr uInafrIX P1. iuttA x.ili I,

IMAIdi"Ie to take into A.r"Ollit the Im"IM-udV cdtIn, tnplu!Ia' via mIstl,11 iii (:t.*4 Tho.



hin the same manner we can write explicitly

(DCL)2,k 1 (D)' ( 1 (3.22)

Equation (3.22) is a direct consequence of (3.9). Note that the full first, column of Dc is

modified, and not only the first element as in (3.21).

We proceed by writing explicitly the elements of the matrix SDLFT. III fact

N N

(SDLpT)j,k = (SDLT)j,k - -r E E gj(yj)bobo,,,,,h7,,(xk).
1=0 m=0

Thus using (3.18) we get

(SVLPT)jA = (T)h'L),k - r qj(yo)ho(xk) (3.23)

From (2.9)
ho(xk) = 0( + Xk)Pk(xk)

2P,( 1)

and since Yo = = 1 gj(Yo) = 6j,o so the right hand side of (3.23) is exactly the same as

this of (3.22).

Thus (3.20) is established. The proof is completed. •

4 Parabolic Equations

In this Section we present the Chebyshev-Legendre method for the parabolic equation •

Ou d2u
U- -O<r 1 t>0 (4.1)

with Robin boundary condition

au(l,t) + j3u 1(l,t) = g+(t)

"Ju(-l1, ) + bux(-1, t) = j-(t). (4.2)

We will assume that o, /1, " are non-negative and b is non- positive. This assures the time, t

* decay (or non-growth) of a(x, t).

WVe note that by now there is a very limited stahility theuiry for the ('htbysihev methodl.

"In fact <.tability had been pIoved first for tilt, l)ichlet case 1 = 0b 6 = 0, (see [7]) aid then

for Neti.iaev.i case' = = U. [9]. Here we present the ('-1, itmethod and prove stahility for

the approximation to (4.1), (4.2) for the general Robin cas.t.

11
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Denote by PN the finite dimensional space of polynomial of degree at most N. We define4

the operator A

)A: 'PN--+ PN

by

Av(.rt) d~~, t=- +R(x, t) (4.3)Ox,
where

R(x4t) roQ'(Ix)[B'(t) - g'(44)] + TNQ-(.r)[B (Il - g-(t)I (4.4)

with

Q-(x) = (I -),,,X B-(t) = ytV(-l,t) + bvr(-l, 0.
2PNk(l)

The numibersrO, r,, will be determine later to assure stability. We define also thie following

sCalar product

N

0%) E t'(Y3 )tV(Yj)w, (4. 5)
j =O

whiere y,,,; are thie Leget-dre points and weights re-spectively.

The Chebyshev-Legendre Method for Parabolic Equations

We seek tlie polynomital of degree N\ in x,. v(x, t) that satisfies

,j~ 1t)- (.r.t) 0 < < N\ (4.t6)

whiere x, are ( 'hehsiv collocation points.

Note t hat again. the work i. dione on the ('hehvshev Imint. .r,, the penlalty valtlv S

Q l,.r Q-(.rp are coupulted 1by (.]and are- Ilulzero (or ally Xr,

To prove ther itahity of f(4.6). west- tglt) 0 1 U. 111 the followil~le. tma111. we will

find ronidit imns ott ru antlt m\ sch that tfhe operattor A tu le semi la*1111,44.



Let v E PN and

L [(I + 2K) + 2VxT lJ *

wiwbh

with Kc = wooa/b.

Let the operator A be defined in (4.3). Then

N-i

(Av, v)N X, v.(yj)wj (4.7)

provided

r; < o (4.8)
r~d~ _<r• _ r~~l.(4.9)

Proof:

Since the Gauss Lobatto Quadrature formula (2.6) is exact for polynomials of degree

2N - 1 and since v(x, t) is a polynomial of degree. N, we have .

N l

E V(.Vy,)v-(y 1 )W, v(x)v.,,(x)dxr
,)=0

- ,,1 )v),,(1) -v,(- 1,,r(- - ) - j,,~.)v(),.(r)d• •

using the standard integration by parts technique.

I Ising again the (;aus Lobatto formula, one would get

N Nt
- • ,,(yj~tj.glyj)W = , -,,1)-M,) + r(-,1)

N-I

= E t,•(y, + (4.10)

Thu. 11makini, tiw of (4.10) wt, tcn write

.,.,- .,..3 + l(-. l X . , (4.11 -

1:1

* 0

0 * 0 0 0 • 0 0



where

F(x,a, b,k) = ;r('kbWk - l)v(x)vt,(x) + rTawkv 2(x) + wkvC(x). (4.12)

In order for A to be positive we need to choose ro and rN such that F( 1, a, 3, 0) and

F( - 1, y, 161, N) are non-negative. For F(I, a, /3, 0) to be positive, we need

(rollwo - 1)' < 4arowO2

01

-ro'/I' - 2rowo(/I + 2awo) + I < 0

This ru Las to lie between the roots of the parabola described in the left hand side, •

namely ' and rT.,3.

The same kiznd of consideration holds for T., Thus F(1, a,/3, 0) and F(- 1, ', 16!, N) are

1oii-negative for the range of ro and rN given in (4.8) and (4.9), respectively. (4.7) follows

from (4.11). 0

Remarks

* 1. The Dirichlet boundary condition for x I is obtained from (4.2) by setting a = 0

!, '3= 0. In this ,- se

T+u

which yields thl, condition for the penalty amplitude

TO > -N 4 l 4

2. The Neumann hountary coutlitimn foi .r = I correspunds to thie ca.se = 0, 3 = 1. In
this cause T r,,r yielding the condition

ro N(N + 1)
-o '2

Wt- 4re now reatdv to state the stability theorer for the (-L methxi when applied to

paraholic equations with Robin boundary cunditions

14
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Let ro and rN satisfy (4.8) and (4.9) respectively. Let v(x,t) E ?N be the (-L approxi-

mation to u(x, t), obtained by (4.6). Assuming that g+(t) = g-(t) = 0, v(x, t) satisfies the

energy estimate 0
.~ TN-I

(v(x,t),v(x,t))N 5 (V(X,0), V(X,0))N - 2j E v,(yj, t)dt (4.13)

where the scalar product (f,g)N is defined in (3.5). 0

Proof :

Since (4.6) holds for j = 0, ... , N and since v, vt' and R are polynomials of degree at most

N, we conclude that both sides of (4.6) are equal not only at the grid points but also for

every x.

Ov(x, t) Odt'(x, t
-- 2 - d2 R(x,t) -l<x<<

where R(x, t) is defined in (4.4). 0

Noting the definition of A in (4.3), we get

Ov -A~

Tt

Thus
dv

(v,)N= (v,Av)N

Using Lemma 4.1 yields

1 d N-I

Wj- ~ (V )N F . YtW

2j=1

and integration yields the stability result (4.13).

We stress again that the Legendre collocation points y, are "ghost points", which are

never used in the computations but only it) the proof of the stability. Actually we could

restate the proof in terms of the Chebyshev collocation points x,, as in Theorem: 3.1.2.

5 Numerical Results

Case 1: Linear scalar PDE

15
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In this Section, we will consider some numerical examples that verify our claims stated

in previous Sections. Consider the scalar linear initial-boundary value hyperbolic PDE

U= -l< x < l,t>0 (,5.1)

with initial condition

/J(x,O) = sin(27rkx)

and boundary condition at x = I

u(l,t) = g(t) = sin(2irk(l + t))

We seek an N degree. x-polynomial v(x, t) that satisfies
ddv(xj. t) = Dv(x 3,t) - -'Q(x3)(v(l,t) - g(t)) (5.2)

at Chebyshev collocation point xs = cos(2rj/N), j = 0,..., N and D is the differentiation

operator (matrix). •

For different construction of the Nth degree polynomial Q(x), one could have different

type of boui, lary treatments. For examples,

1. if Q(x) = ('x)' ,D = Dc and x = xj are the Ga,|ss-Lobatto-(hebyshev points, • 4
21" (1)

then we hlave the (hebyshev-Legendre method (C-L).

"2. if Q(x') = :=ThI) D D(- and x = x, are the Gauss-Lobatto-(.hehyshev points,

then we have the ('hehyshev penalty method (([-P).
it+X " (r)

:. if Q(x) = (.I •.(ri)I D = DL and x = y. are the (ials-Lohatto-Legendre points, thenl

we have the Legendre penalty method (L-P).

Let denute t-,"l = rx'•, tit) and At he the time step intcrement. thel fur j U..... ,

We wouhd advanice the system of ODE (5.2) in time hy tlw third order Hleun Runge Kuttta

scheme that hasw the followitg form •

For .j 01,., N, and v'- ()

(t, ,(-i At+= - rQ(x',)(• - y(Q,))}
t ) ,4, +0 2At),, -t

,+= - (Dv( - rQt•, - O(t,t) -- :,L

(,+)= l-v,, +t' +) (5.3)vj 3 3 4 J

Ai 4 )
:1.11 (I)IP- rQ(j.r,)(,,: - Of') - -!-.0(1') -A !(,,)
4 31S",. =l,

It0

0 0 • 0 0 •



Owhere g'(t,,) and g"(t,,) are the derivative,: of the titne-dependent bloundary conditions in

time at t = t,,.

It has been observed before that if one imposes boun;dary condition at each intertiiediate

stages of the Runge Kutta scheme, a larger time-st:'p (CFL number) can be used. Otherwise,
CFL number has to be reduced by as much as four time for stability. In this study, we define

At = C FL/N2 .

The traditional way of the imposing exact boundary condition at x = 1 can be described 0

as following :

For j = ",.., N, and v(' U(= O)

(1) At
v -" = vi A-+ Dv

6 = ,Ain, + •_

v(2) (,j) 2At 1() 3 + -. Dt
2 At

V g(t,, + (5.4)

(,+ () 2At
6 = g(tk + At)

However, as shown in Table I that this procedure would lead to reduction of accuracy in

time as N increases.

Table I
L2 Error and order of accuracy for (5.4) with k = 1

N Error Rate Error Rate Error Rate
16 0.82E-03 0.10E-03 0.29E-05
32 0.15E-04 2.89 0.18E-05 2.91 0.28E-07 3.35
64 0.42E-06 2.57 0.49E-07 2.61 0.72E-09 2.64
128 0.1TE-O7 2.31 0.19E-08 2.33 0-28E-10 2.34

('FL 8 4 !1___I

Hence, the above procedure is modified as following (I)etailed discussion and analysis 0

will appear ini a future paper) :

For 0 = 1. N,...... and tv(u) = V (X.O)

, | ,,*"= + A t "

17
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0 V~ol" = 9(t") +Atg9(t")

(2) n) AtD ()

vi = vj +- - vj13

) (2)2At + t-
Sol)= T,+ (t,.) + (-5.-)(t,)

.(,+l) = I v(,) :3 0) 3 A tD (2)
=4 +4vj + 4 v 2

v(n"+1) = 9(t,+,)

We shall denote this procedure as (XBC). Table I indicated that the order of time accuracy

for this procedure is third order for all N.

Table II

L2 Errc.r and order of accuracy for (5.5) with k = I

N Error Rate Error Rate Error Rate
16 0.77E-03 0.98E-04 0.28E-05
32 0.12E-04 3.00 0.15E-05 3.00 0.24E-07 3.44
64 0.19E-06 3.00 0.24E-07 3.00 0.37E-09 :3.00
128 0.30E-08 3.00 0.37E-09 3.%0 0.58E- 11 2.99

CFL 8 4 1 1
Next, using the C-L method, one get the L2 error and the order of accuracy as listed in

Table II.

Table III

L2 Error and order of accuracy for C-L method with k = 1, r = 4w0

N Error Rate Error Rate Error Rate
16 0.47E-03 0.60E-04 0.28E-05
:32 0.74E-05 2.99 0.93E-06 3.01 0.15E-07 :1.81
64 0.12E-06 3.00 0.15E-07 3.00 0.23E-09 3.00
128 0.18E-08 :1.00 0.23E-09 :3.00 0.36E- 11 2.99

CFL 8 4 1

Table IV

L2 Error of (GL method for different choices of r = 2woo with k = 1,('FL I

N -=8 a =-2 a-=I a o= 0.9 o="0.5
16 0.31 E-05 0.28E-05 0.65E-05 0.83E-05 0.32E.03
32 0.15E-0T 0.15E-07 0.15E-07 0.15E-07 O.ISE.-l
64 0.23E-09 0.23E-09 0.23E-09 0.2:3E-06 unstable
128 0.36E.11 0.36E- 11 0.36E- II unstable imnstahhe

18
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From Table IV, we can see that for r < 2w0 , (-L becomes unstable while for _> 2wo0,

the convergent of the scheme confirms the theoretical prediction.

Case 2: Nonlinear scalar PDE

Consider the scalar nonlinear initial boundary value hyperbolic equation 0

h =U -2,rkcos(2rk(x+t))(l +sin(27rk(x + t))) (5.6)

-- 1 X< 1, t>0

with initial condition

U(x, O) = 2 + sin(2wkx)

and boundary condition at x = 1

U(l,t) = g(t) = 2 + sin(2rk(1 + t)).

This PDE has an exact solution given as (f(x, t) = 2 + sin(2rk(x + t)).

• Table V

L2 Error of C-L method for different choices of r 2w0 a with k = 1, cfl = ILN a=8 cv=4 ac=3 a=2.5 ExactBC
16 0.86E-02 0.10E-01 0.18E-01 0.27E-01 0.72E-02
32 0.40E-07 0.40E-07 0.40E-07 0.11 E-04 0.39E-07
64 0.68E-09 0.68E-09 0.68E-09 unstable 0.67E-09
128 0.11E-10 0.11E-10 0.11E-10 unstable 0.11E-10

Different values of k are also tested, sinilar results are obtained.
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